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A parametric method for spatially resolved measurements for
velocity autocorrelation functions, R,(7) = uu(t + 7)), ex-
pressed as a sum of exponentials, is presented. The method is
applied to a granular flow system of 2-mm oil-filled spheres ro-
tated in a half-filled horizontal cylinder, which is an Ornstein—
Uhlenbeck process with velocity autocorrelation function R,(7) =
(u2e " where =, is the correlation time and D = (u®)r, is the
diffusion coefficient. The pulsed-field-gradient NMR method con-
sists of applying three different gradient pulse sequences of vary-
ing motion sensitivity to distinguish the range of correlation times
present for particle motion. Time-dependent apparent diffusion
coefficients are measured for these three sequences and =, and D
are then calculated from the apparent diffusion coefficient images.
For the cylinder rotation rate of 2.3 rad/s, the axial diffusion
coefficient at the top center of the free surface was 5.5 x 107° m?/s,
the correlation time was 3 ms, and the velocity fluctuation or
granular temperature (u® was 1.8 x 10~° m?/s>. This method is
also applicable to study transport in systems involving turbulence
and porous media flows. © 2000 Academic Press

Key Words: velocity autocorrelation; correlation time; diffusion
coefficient; pulsed-field-gradient; granular flows.

INTRODUCTION

the random motion of granular particles from apparent diffu
sion coefficient images.

Granular flows are of significant technological and scientifi
interest. This is due to their ubiquitous presence in geophysic
systems and major industries, such as foods, pharmaceutic:
and power, and because of their complex behavior whic
encompasses solid-, liquid-, and gas-like states and incluc
pattern formation and self-organized criticali§).(A charac-
teristic feature of granular flow is the discrete nature of th
particles and the presence of dissipative inelastic collision
Continuum mechanics methods modified with concepts frot
the kinetic theory of gases have been develofed-(2 to
model granular flow. The concept of granular temperature
associated with the variance of the fluctuating component
the velocity, is introduced to model flow and is incorporatec
into the system energy balance equatib®) ( Savage and Dai
(13) have used molecular dynamics simulations and shown th
particle collisions can be modeled by a near exponential v
locity autocorrelation function in shear flow. In segregation
mixing studies of inhomogeneous particles, either in the rota
ing cylinder or in a vibrated layer, an important phenomena i
that of a mixture of particles with different diffusivities causing
particle segregation and pattern formation. A diffusion coeffi
cient describing this particle migration has been used to d

A magnetic resonance imaging (MRI) method has beemlop segregation theoried4—-16. Thus, a noninvasive nu-

developed to spatially measure the parameters of any velogitgar magnetic resonance (NMR) technique to spatially imag
autocorrelation function that can be expressed as a sumtlug stochastic properties of particle motion will be of grea
exponentials. The nuclear magnetic resonance (NMR) methalue. MRI can make spatially resolved 3D velocity fluctuatior
used is a modification of the original pulsed gradient methodseasurements deep within the bulk of opaque materials, unli
by Stejskal and Tannedf) to probe diffusion processes. Thesa recently proposed technique of diffusing-wave spectroscoj
methods and their applications have been discussed by Galf), which makes use of multiple scattered light.

laghan R) and in more recent review8,(4). Ours is a general We model the particle velocity by a stationary stochasti
NMR method that can be applied to problems such as turbprocess with mean velocity and a random fluctuating veloc-
lence and porous media flows. In this paper we apply it toity u, such that that the velocity autocorrelation function is
granular flow system consisting of 2-mm spherical particléd,(t) = (u(t + 7)u(t)). The formal force balance for the
rotated in a half-filled horizontal cylinder. We have previouslgystem can also be expressed in terms of a generaliz
made MRI measurements of the velocity fiel),(axial seg- Langevin equation(g),

regation 6), apparent diffusion coefficient imageg), and

time-dependent diffusion coefficient image®) (n granular d t
flow systems. In this paper we present a method to calculate the M . u(t) = —m h(t — sju(s)ds+ f.(t),  [1]
correlation time and the diffusion coefficient corresponding to —
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where m is the mass of the particley(t) is the memory temperature in granular flow studies, ay’) = R,(0) (13). It
function which incorporates friction effects, arfidt) is the then follows that
random force. The autocorrelation functi®)(r) of u(t) can
be related to the memory functidrit) and the forcing function
properties through the fluctuation dissipation theorel8).(
The method we discuss in this paper consists of assuming a
parametric form foR,(7) and estimating its parameters. The We develop a method for estimating parameters of th
same technique can also be applied to measure the parametelscity autocorrelation functiomR,(7) = (u?)e "' of the
of the memory function. Ornstein—Uhlenbeck (O-U) procesks), which describes the
Another important tool for studying dynamics, mixing, andrelocity of a Brownian particle. Three pulse sequences will b
transport in systems with random or nonlinear advection is thised: (a) a standard bipolar pulsed gradient spin-echo seque
time-dependent diffusion coefficient (PGSE), (b) its repeated version with two cycles, and (c) a flo
compensated pulsed gradient spin-echo sequebte &lso
referred to as double PGSE elsewhefe 4j. We use the
<(X(A) - X(O))2> | f “f| i in-
D(A) = , [2] nomenc ature of “flow compensated pulse gradient spin-ect
2A sequence” rather than double PGSE to avoid confusion wi
the repeated PGSE sequence. The flow compensated pul
where x(A) is the position of the particle at tima and 9radient sequence has its first moment zdrag(t)dt = 0,
((X(A)) — x(0))?) is the mean squared displacement or pos\fvhereg(t) is the effective gradient and is akln_ to t_he even spil
tion variance {9). Because the particle displacement can gh0- It has the property that the magnetization of a sp
calculated from the velocity, the time-dependent diffusion afoVing with constant velocity accumulates no net phase durir

velocity autocorrelation are related for a stochastic process B} Seduence, an effect first observed by Carr and Pull (
déGennes showed that even for stochastic motion with corr

lations, such as turbulent flow, even echoes refocus spi

D = (u?)7.. (6]

A T partially and reduce signal l10s23). We use this sensitivity
D(A) = (1 - A) Ru(7)dT. [3] toward correlated motion to improve correlation time measure
0 ments. The compensated pulse sequence is also the smal

subset of the time-modulated gradient pulse sequences con:
red by Callaghan and StepisniR4]. They developed their
heory in the frequency domain, while we present a techniqt
for estimating the parameters Bf(7) in the time domain in
this paper.
o Stepisnik 20) has derived equations for the apparent diffu:
D = lim D(A) :J R (T)dr. [4] sion coefficient and applied them to experimental data o
o polymer diffusion. He considered both the O—U process and :
exponential memory function. We derive similar expression
for the compensated and the repeated pulsed gradient
NMR is a powerful technique for probing particle dynamicguence. In turbulence studies Gao and G@g have applied
because the diffusion coefficient measured by NMR with nagn exponential velocity auotcorrelation function. Kuethe an
row (impulse like) bipolar pulsed gradient, @ and time Ggo @6) considered a parametric ford(A) = D(1 —
separation\ is the time-dependent diffusion coefficieb{A). e *™), and compared their model to Gao and Gor&%)at
If the gradients are not impulses, then NMR measures fifst and second echoes, for their applicability to measure tf
apparent time-dependent diffusivity whose analytical expregqdy diffusivity. In this paper our emphasis is on strategies 1
sion can be calculated provided we know the analytical mod@kasure the velocity autocorrelation function of any gener

The diffusion coefficient is defined to be the long time limit o
D(4),

A—x

for Ry(7) (20). o . form, using the exponential correlation as a template.
The average correlation time for a process with velocity stydies of transport phenomena in heterogeneous me
autocorrelation functiomR,(7) is defined by 18) apply averaged theories of transport phenomena which moc

the conveyance of mass, energy, momentum, and electric

. within the system. Examples of averaged transport models &

7. = J R,(7)d7/R,(0), 5] found in the ki_netic theory of gases, turbglent flow theory

transport theories for porous media, colloidal systems, ar

multiphase (solid—liquid—gas) suspensions. Mixing occurs i

these systems because of nonlinear flow effects and coupli

and the velocity fluctuation intensity, referred to as the granulbetween flow and diffusion. Transport is due to macro sca

0
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velocity fluctuations and is often modeled by dispersidr) or A 5 PoTm2

an effective diffusion coefficientlQ). The dispersion theory is

similar to those for diffusion and the same MRI techniques Lt t,

used for measuring the microscopic molecular diffusion coef- 01 AI_I Ut3 t |_|
iTmi

ficient can also be employed for measuring macroscopic dis-

persion £8). The dispersion coefficient has been measured for

porous media flows20-32 and Taylor dispersion3Q@). A n bipolar gradient pulse pairs
concept of nonlocal dispersion coefficient has been developed

to model transport processes where velocity has fluctuations B 5

over a continuum of scales, as in turbulence and fractal porous I_I

media @7), and NMR methods for its measurement have also SPG ,
been developed3d). EA |_|

THEORY c 5

| Tm
The principle of this method will be illustrated in terms of RSPG |—| E |_|
the effective gradientgy(t) of duration T and zero area ! |_|
(f g(t) = 0). This condition is necessary for the phase of the
stationary spins to be refocussed. The phase of the NMR spin
is given by D

LT
T 1

' |
P

d(T) = vf g(s)x(s)ds = —vj 6 (s)u(s)ds, [7]

whered (t) = [ g(s)dsandf(T) = 0 becausd ;g(t)dt = 0. FIG. 1. Effective pulsed magnetic field gradient sequences. (A) A gener:
FoIIowing Mitra and Halperin 35) we can expressb(T) in Sequence wittm bipolar gradient pulses of arbitrary order. Gradient pulse

_ L sequences with different motion probing properties can be designed by cc
terms of q = (ygS)/(Zﬂ') and the mean position  of thetroIIing the polarity of the bipolar pulses and the mixing timeg. (B) The

particles effective gradient for the single pulsed gradient (SPG) experiment. (C) Tk
repeated pulsed gradient (RSPG) sequence. (D) The compensated pul
gradient (CPG) sequence. Each of the gradient sequences has a differ
tero sensitivity to motion dependent on the time scales of the motion and tf
Xste = B x(s)ds gradient sequence polarity.
tk

during each gradient pulse of duratigh For the bipolar iment (VEXSY), where the amplitude of two pairs of bipolar

gradient pulse pair sequence of Fig. 1A, we have gradients is stepped independentdy)( _
‘The NMR signal is proportional to (e"T)
S(T) = 270( X0 — Xox, — Xss + Xos T Xote — Xo10) (e M=y "with its magnitude being given by
= 2’7qu, [8] E =|<ei(¢(T)_<¢>)>| ) [9]

whereX = Xs0 = Xoty = Xots T Xons T Xota — Xotge Xone = ) )

x(t,) is the position of the particle at timt for a shorts. X~ Equation [9] can be expanded by cumulant expansion to
measures the particle displacement in the tilnbetween the

bipolar gradients for one bipolar pulse. For multiple bipolar E = g (¢M~@1d 21+ [sM (@]9l = - - [10]
pulses of arbitrary polarityX is a combined measure of par-

ticle displacement during _each bipolar gradien_t puls_e. Its Va%here(x)c stands for the cumulant af Expanding cumulants,
ance depends on correlations among successive dlsplacen\ﬁgtaet 19
(4). In this analysis we repeat bipolar gradient pulses of zero
area with arbitrary polarity. A different probing sequence
where one gradient pulse is followed byefocussing gradient
pulses has been considered &6)(to measure position corre-
lations. Another variation is the 2D velocity exchange expeEquation [11] can also be expressed in terms| aind X as

E = e (M=@12/20+ ({6 ~(@1)-3[oM~@123a=- - [17]
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E= e—2w2qza§+(2w4q4<(><—<x>)4—3<gi)2))/3—- - [12] E(q, A, 8) = @ 4?22~ (8/3))Da(d) [18]
If ¢(T) has Gaussian distribution, terms higher than secopd(A) can be calculated from Eq. [18] without any knowledge
order are zero and we get of R,(7). For any specific model d?,(7), we can theoretically
relateD,(A) to the parameters d®,(7). The factorn in the
E=e ¥? [13] exponent (Eq. [18]) ensures that we hebg = D for any

numbern of bipolar pulses Z) for uncorrelated Brownian
wherea? = ((¢(T) — (¢))?) is the variance of the phase. [fmotion R,(1) = 2D5(7)).
experimental data indicate that B vs g® is a straight line, The MRI experiment to measure diffusion consists of slic
which will generally be true for small values of, then we selection, followed by sensitizing the magnetization phase |
know that theg® term is dominant in this region and we carimotion, and imaging the slice. Magnetic field gradients fo
calculate the variance? = ((X — (X))?) from the slope of the motion sensitivity should have zero total area and otherwis

straight line #). In this linear region, we can write can have different patterns to probe motion proper@sihe
common bipolar gradient (Fig. 1B), also known as a pulsec
E — g 27%%% [14] field-gradient method, will be called a single-pulsed-gradier

sequence (SPG). In Fig. 1C we have a SPG sequence repe:
once, which we call a repeated single pulsed gradient sequer
aQPSPG). In Fig. 1D we have a flow compensated sequence
sequence with its first moment zerptg(t)dt = 0), which we

The phase variance in Eq. [13] depends on the veloc@Z” a compensated pulsed gradient sequence (CPG). If nec

autocorrelation functiorR,(7) and the shape of the probing ry, these sequences can be extenden paises to probe

gradient waveform. This relationship can be explicitly writtef "€ complex velocity autoco_rrelatl_o n functions, L
as For the SPG sequence the intensity of any voxel is given k

which is identical to Eq. [13]. Thus, we can calculatgfrom
Eq. [14] either for Guassian phase distribution or for sm
values ofg, where InE) vs g is a straight line.

o ® E(g, A, 8) = Ke 47 a*(A-3/3Dsa) [19]
ol = sz 6(t) J R.(t — s)6(s)dsdt [15]

0 0 where 6 is the gradient pulse width) the gradient pulse

T ) separation, andK a proportionality constantDg(A) is the

= zyzf 0 (1) j R,(t — s)0(s)dsdt  [16] apparent time-dependent diffusion coefficient. Its spatial di
o 0 tribution can be calculated by repeated imaging for differer

values ofg, at fixed values ofA and$, followed by a voxel-

by-voxel least-squares fit to Eq. [19].

_ For the RSPG sequence the apparent time-dependent dif

m’on coefficientDg(A) is defined by

where we have defineéi(t) = [;g(s) = 0, fort = T. Thus
if the velocity autocorrelation function is known we can cal
culated’ and hence the signal attenuation. Equation [15] is
a convenient form to take the Fourier transform and have an
expression for signal attenuation in terms of the velocity au- E(q, A, §) = Ke 87 a%(A-8/9 D) [20]
tocorrelation spectrum and the gradient waveform spectrum
(2). If Ry(7) can be written in terms of separable function imilarlv for the CPG sequence we defibe(A) b
then Eq. [16] can be further simplified. For example, ?}5 y d De(4) by
Ru(t — s) = X2 A1) A(s), then

( ) k k() k( ) E(q, A, 8) _ Ke,gﬂ.zqzm,g/g)Dc(A). [21]

T t
oh=2y? EJ O(t)Ak(t)J 0(s)A(s)dsdt  [17] |t follows from Egs. [2], [14], and [17] that for the SPG
k Jo 0 sequencd®(A) = (1 — (8/(3A)) Dg(A). Thus by measuring
Dg(A) by NMR we can calculat®(A). This relationship has
A Mathematica program was used for such calculations. Amyade the PGSE technique very popular for probing diffusiv
R,(7) that is a sum of functions of the forfm?®)e """ coswr) motion.
satisfies the separable requirement. Let us defined, (t) = [;g(s)ds, for0=t= A + §, and
We consider a train of bipolar gradient pulse pairs whosero otherwise. Then for the RSPG sequetg = 6,(t) +
polarity is chosen to probe spin dynamics. We haveuch 6,(t — A — 6 — 7,) and for the CPG sequenai(t) =
pairs in Fig. 1A. For such a pulse train, the apparent diffusigh(t) — 0.(t — A — & — 7,) which, when substituted in Eq.
coefficientD ,(A) measured by NMR is defined by [15], imply that
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. o T T
Ui(RSPQZZ[Ui(SPG)-i-yZJ 0, (t—A—8—-1,) |

0

X fx R,(t — s)0,(s)dsdf] [22]

and

(ri(CPG) = 2[c5(SPO — yzj 0,t—A—-8—1,

0

X Jm Ru(t — s)6,(s)dsdf]. [23]

It follows from Eq. [13], the definition of the apparent diffusion
coefficients (Eg. [18]), and Egs. [22] and [23] that

Dr(A) + Do(A) FIG. 2. Dependence on the ratié/r. of the apparent time-dependent
DyA) = R c [24] diffusion coefficient for the gradient sequences of Figs. 1B-1D for idea
S 2 gradients,8 = 0, and the exponential velocity correlation functiBy(r) =

(u?e ) For A < 7, the single D) and repeated[y) pulsed gradients

for any velocity autocorrelation function. Another property O?xhibit short time diffusive behavior which is linear, while the compensate
) quence@. ~ 0) refocuses the magnetization for motions which appea

. . .. . S
these apparent diffusion coefficients is that the two Centr@jterministic over time\. This is evidenced by the differenc®f — D¢),
gradient pulses overlap and cancel each other for the RSR&h collapses t®x, at short observation times. All three gradient sequence
sequence (Fig. 1C) with infinitesimally smalland7,,, redue  measure the same asymptotic diffusBn= (u®)7. in the limit A > ..
ing the RSPG sequence to a SPG sequence. Thus for infinites-
imally small 8 and 7, Ds(2A) = Dg(A).

The functional form of the three apparent diffusion coeffieoefficients tend to the asymptotic diffusion coeffici€ntfor
cients can be calculated in terms of velocity autocorrelatiay < A. In other words, if the spin motion is uncorrelated in
parameters from Eqgs. [13] and [15] and Egs. [19]-[21]. the time scale of our pulsed gradient sequence, then all thr
Ry(7) = (u®e "' then apparent diffusion coefficients measure the same quabtity

For highly correlated motion within the tim& (7, > A) Eq.
a [27] implies thatD .(A) approaches zero for anyasr. tends
Ds(A) = D(l + 82(A—8/3)) [25]  to infinity. In other words, there is no attenuation in image
intensity because of motion. This is the distinguishing featur
D _ ( a-+ e(T"‘ITC)b/2> of the compensated CPG sequence. It compensates for col
RA)=D|(1+ , [26] : : . . L
8°(A — 8/3) lations in motion and increases sensitivity for correlation tim
a_ e Wp/2 measurements. In addition, fo_t; > A, we haveDS(A)_ =
52(A—5/3)> [27] Dr(A)/2 = (u»)A/2, the ballistic ¢ o« A*) short time
motion of the O-U process.

We have also plotted the normalized differen&e,(A) —
D.(A))/D of the apparent diffusion coefficients for the-re
peated and the compensated pulse sequences=for, = 0

a= 218+ 71— e ™) in Fig. 2. It is a measure of the spin phase refocusing by tt
X (2 — e~ W) 4 g~ (A-dl(w) [28] CPG s_equence_and (_Jlepends on the relative valuAsaofl 7.
The difference is a linear function & for 7, > A, because
b=731-e )1 - e W) [29] Dc(A) — 0 andDk(A) is linear. It has the interesting property
of having a maximum at/7.) = 1.24. ltapproaches zero for
andD = (U*)r.. 7. < A because the particle motion appears random. Thus v

In Fig. 2 we compare the three apparent diffusion coeffimmediately know the range af, in our experiment from the

cients for a smalb andr,, = 0. All three apparent diffusion difference ofDg(A) andD.(A) as a function ofA.

Do(A) = D(l +

where
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050 IAARRRRRRS T ] different D and t., making it impossible to assume that their
E ] stochastic properties are stationary. At the top center of tt
flowing layer in our experiments the velocity was about 3(
cm/s, so a particle moves 7.2 mm during the motion probin
time of 24 ms (A + 48), which is about 7 pixels at 1 mm
spatial resolution. Therefore, we are measuring average pa
cle dynamics over the region the particle moves i 2 48.
Smooth spatial variation dd and . over these 7 pixels gives
us added physical basis to trust the stationarity assumption
We have seen from Eqg. [24] that only two of these experi
ments are independent. We can extract the information of tl
third experiment from any two experiments. However, if the
process is stationary over the total motion probing time, Ec
[24] is true. We note that with SPG the motion is probed for :
time intervalA + 26 (Fig. 1B), while for RSPG and CPG it is
probed for time interval & + 44. If all three experiments are
done and Eq. [24] does not hold, then we know that particl
motion statistics present ovAr+ 28 are not the same over the
2A + 45 interval, and we conclude that particle motion is no
Alt, stationary during the experiment. Thus doing all three exper
FIG. 3. Effect of the gradient pulse durati@on the differenc® — D ments and testing the validity of Eq. [24] gives us a check o

of the apparent diffusion coefficients measured for the repeated single 4R€ Stationa_rity of the spin motion. Finally, the use of all thres
compensated pulsed gradient sequences as a function of the\fatioFor ~sequences increases the number of measurements for the s
/7, = 0.58 thedifference is everywhere decreasing as a functiodbf, A from which to calculatdd andr. and provide separation of
providing an alternative means to determine the range of the correlation tirme stochastic and deterministic motions relative to time sca
A (4, 33.
houah all lotted for infinitesimall If T, is varied for fixed values of andA then Eq. [30] gives
Even though all curves were plotted for infinitesimally smag simple method for calculating and r.. However, if we do

8 in Fig. 2, the effect. of finited can be considered by looking not varyA we forego the advantage of finding out whether the

at the exact expression for the difference betwbe(A) and experiment was done near the sensitive part of Eq. [30], i.€

Dc(4), near the maximum iA(A, 7,). In this paper we have kept
T» = 0, 8 constant, and varied, starting from a minimum

[30] value of A which we callA,,, (=8). As mentioned earlier, this
was done to probe whether we were at the sensitive region
Eq. [30]. We calculated, from

0.40F
0.30

0,205

(D<(4)- D(4))/D

—(Tml7c)

A(A, 1'm) = DR(A) DC(A) = 82(A — 5/3) .
In Fig. 3 we plotA(A, 1,,)/D for 7, = 0 with the experimental
restriction of A = 8. The difference is a monotonically de- _ (Al 2
creasing function o for (8/7.) = 0.58.Thus, if the exper Al4) = (Amn = 8/3) (1 %(A ,nlf)) 5
imental data show thaD(zx(A) —D¢(A)) is decreasing every A(Bin) (A—28/3) (1—e ")
where withA for A = §, then we know that&/r.) = 0.58.
The sensitivity for measuring. decreases with increasingby nonlinear least squares fit. This ratio is independer of
&/7.. It is best to be able to chooseas small as possible andOncer. is known,D can be calculated from Eqs. [25]-[27] by
work near the maximum ofifz(A) — D(A)). The available a linear fit.
gradient strength limits the smallest that can be used becaus8o far, we have discussed the method for calculabrand
signal attenuation depends gn= (ygd)/(2m). 7. in detail forR,(7) = (u?e """, To demonstrate the ability
There is considerable flexibility in how to calculddeandr, of our method to handle more complex velocity autocorrelatio
from Egs. [25]-[27] and the difference Eqg. [30]. Here wéunctions we present the example of a velocity autocorrelatic
discuss some of the possibilities and the analysis used in thisdeled as a sum of exponentials. Such a velocity autocori
work. Even if we had carried out only the SPG experiment (Etation function is relevant to a particle in a high density fluic
[25]) for a number ofA values, we would in principle have undergoing “caged diffusion” and particles diffusing in a box
sufficient data for calculatin® and .. In some experiments, R,(7) can become negative because the particle suffers refle
such as our rotating cylinder experimedtandr, are spatially tion on collision with the walls38). Different analytical mod-
varying. If the timeA over which the motion is probed is large els for these types of velocity autocorrelation functions hav
then in this time the particles can move over regions of widebeen discussed in the context of molecular dynamics by Boc

(31]
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and Yip 38). Negative velocity autocorrelation functions havénteresting property of Eq. [36] is that the asymptdilcas
also been seen in porous media flow studi88) (and in defined by Eq. [4] and the average correlation timeare both
computer simulations of granular fluids in the rapid flow, gagero. This is because the particle movements are bounded
regime @0). One simple model is that of a sum of two expowall restrictions, which makes((x(A) — x(0))?) also
nentials with one of the coefficients being negat®) (Again bounded, and as the tindegoes to infinityD tends to zero (Eq.
the apparent diffusion coefficienBs, Dy, and D. can be [2]). In Fig. 4 we plot the apparent diffusion coefficierds,
easily calculated in terms of the parameters descriBf{g). Dg, andD. as a function oA/, for 7,/7, = 16. In a system
Thus if described by Eq. [36] there is always a crossover poidt at
A, as shown in Fig. 4A, such that fa&r = A, D. = Dg. This
R,(7) = > ce (), [32] occurs because the spin magnetization phase gets refocu
K due to reflections at the wall or particle cage and not becau
of the bipolar gradient polarity being reversed as in the CP
then sequence. In Fig. 4B we show the expected behavior that
long observation times the three apparent diffusion coefficien
S cor go to zero asymptotically. This example again demonstrat
» KTk the advantage of carrying out experiments with the RSPG al
(u? = E Chs Te = , the CPG sequences. If we were to see DgtA) has become
K 2 c smaller tharD .(A) for someA, then we know that the particle
velocities have reversed in the time between the first and tl
o second bipolar gradient pulses. This could happen because
andD = 2,c,7. The coefficientsc, do not have to be all \yg| reflections, as in the above example of restricted diffusio

positive, although their sunju®) must be. In this case thein a box or particle cage, or due to vortices in a flow.
equations corresponding to Egs. [25]-[27] are

EXPERIMENT
ZiCyTi@

T 52A - 8l3)

chk’rk(ak + ei(Tm/‘rk)bk/ 2)

Ds=D [33]

The experimental system consisted of a horizontal 70-mi
i.d. cylinder half-filled with 2-mm oil-filled, hard plastic spher-
[34] ical beads and rotated at 2.3 rad/s (22 rpm) at an ambie

Dr=D +

8%(A — 8/3) ' temperature of 25°C (Fig. 5). The MRI experiment was done i

a 31-cm, 1.9 T Oxford magnet with a TECMAG imager/

and spectrometer. We took a 20-mm thick transverse slice ar
made an image of the cylinder cross-section with 1-mm b

Sceri(a, — e~ ™™h,/2) 1-mm in-plane resolution. In this paper we will discuss only

Dc=D 5%(A — 8/3) - [35] the axial component of the velocity autocorrelation function

This is the most straightforward component to consider be
a, andb, in Eqs. [33]-[35] can be appropriately obtained frongause of the absence of any average velocity in the axi

the definitions in Eqs. [28] and [29]. For this more COmple)(%hrectlon. Clearly, this method will also apply to measurement

R,(7), We must estimate 2 parameters for a sum of expo of correlation times of velocity components in other directions

nentials from NMR data, a much harder problem. _The pl_JIse sequence used in these experiments is shoyvn
. . : Fig. 6. Sixm pulses were used to refocus the effect of motiol
Let us consider a simple model fét,(7) in the case of . L s
. e . - in the presence of magnetic field inhomogeneities. The eve
particles diffusing with an O-U process within parallel plates .
of separatiord (41) number of m pulses ensures that the first moment of the
' background gradient is zero and the phase acquired by sp
moving with constant velocity in the presence of these grad
R,(7) =D (1 e (i) _ i e“”w)> [36] ents is also zerd@(). This refocussing of background gradients
‘ ’ minimizes signal loss and enhances the signal-to-noise ratio 1
calculating the apparent diffusion coefficients. There is sorr
In this equationr, is the correlation time for the unrestrictedunavoidable signal loss from spins in voxels that experienc
process and, the unrestricted asymptotic diffusion coeffi acceleration, on average. This loss was minimized by keepi
cient. Qualitativelyr, is a measure of particle dynamics andhe time between the pulses short, and increasing the time fol
the collision with the walls is modeled hy,. The negative sign the gradient pulse separation by going from an initialfulse
before the second exponential models the reflection at thegquence to therSpulse sequence used.
walls. 7,, is of the order ofd*/D,, the average time a particle The diffusion coefficient and the correlation time for the

needs to diffuse across the separation between the walls. aial (Z) component of velocity fluctuations were measured b

u TW
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A 1.0 ' ' T T Axial component of diffusion is measured
'\ R4) Do
\\ Dr s
1
1
0.5F \ D, ]
Q ‘ be |2
= \ i <a
a Y = 20 mm slice thickness
Q \ 1%
AR | & FIG. 5. Schematic of the granular flow experimental geometry. In this
e experiment we present data for the diffusive motion in the axial direction of
0.0 half-filled rotating cylinder as a function of the lengttparallel to the free
surface and depth perpendicular to the free surface. The particles underg
shear flow in a lens shaped layer near the free surface and are returned to
top of the flow by solid body rotation, as depicted by the arrows for velocity
in the left end of the cylinder.
—050L vy
2 4 6 8 10 diffusion tensor by suitable combinations of the gradients. Tt
AT, in-plane particle velocity images in the horizontal and the
u . . . . .
vertical direction and the axial velocity were also measured kb
B 1.0 ' the phase metho@q) with three velocity encoding steps. The
velocity sensitivity was 0.24 m/s per radians of phase shift.
The mean velocity in the axial direction was found to be zerc
The spatial dependence of the three apparent diffusion coef
cientsDg(A), Dg(A), Dc(A) were measured for a fixedl =
2.048 ms andA of 2.75, 6.31, and 8.06 ms. Each apparen
Q:
=
<1 72[ T T T T [ W
« s ML L]
= S 5
g Lo
G ———— &
Gy A
A gA COA
ErsPG E E
3: ;EB ; E
FIG. 4. Dependence on the ratid/r, of the apparent time-dependent ' 6 : 5
diffusion coefficient for the gradient sequences of Figs. 1B—1D for ideal : : : :
gradients, = 0, and the velocity correlation functidR,(7) = D,[(1/(r.)e ™™ B CA CA
— (L/ry)e"™] with 7,/7, = 16. R,(7) exhibits negative correlation for g N :
A/T, > 3 because particle velocity is reversed on collision with the walls. In E E
(A), at larger values ofA/7,, D becomes larger thaB, because of wall gcpg =
reflections; (B) shows the behavior of the apparent diffusion coefficients at 5§ 0

longer times. All three apparent diffusion coefficients approach zefo-as»
because the position variance is bounded.

i

FIG. 6. Theimaging pulse sequence used to measure the axial diffusion

choosing the motion sensitizing gradients in Fig. 6 to be in tﬁ}ée rotating cylinder. Sixr pulses minimize the echo time and provide even

axial direction. The diffusion coefficient and correlation tim

echo refocusing of magnetization phase due to particle motion in backgrou
%radients. Motion sensitizing gradient pulse trains are presented for (A) tt

in the transverse plane can be measured by choosing diffusigiated single pulsed gradient (RSPG) and (B) the compensated pul
sensitizing gradients in theX( Y) directions and the full gradient (CPG) experiments.
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§=2.048 ms 4x10¢  Wwhile it increases for eacl in going from CPG to SPG to
RSPG, indicating that, is of the same order &s. As a result,
we are able to calculate, from Eqgs. [25]-[29].

Figure 8 shows quantitative plots of the apparent axic
diffusion coefficients along two selected lines from the cente
column A = 6.31 ms) of Fig. 7. The two selected lines are the
perpendicular bisector of the free surface and a line parallel
the free surface but 1 mm below it, as shown in a schemat
diagram to the right. We also plot the averag®qfandD . as
a dotted line and it is identical, within experimental errors, t
Ds. This agreement confirms that particle dynamics have n
violated the stationary assumption during the motion-probin
time (2A + 49).

There are minor differences in the relative amplitudeB gf

Apparent Diffusion Coefficients ano!DR between Fig. 4 of Ref.g) and our Fig. 8A in deeper
regions of the flowing layer. The rotation rates were the san

FIG. 7. Grayscale NMR images of the apparent diffusion coefficienin the two experiments but the profiles for the two figures ar
measured in the granular flow for the CPB), SPG Ds), and RSPGRx) gt slightly different places in the flow. These differences ar

sequences for displacement observation tihes2.75, 6.31, and 8.06 ms and P : : :
a fixed pulsed gradient duratiod = 2.048 ms. The image intensity is not significant and further experiments will be done to clarify

proportional to the amplitude of the apparent diffusion coefficient and dne natu'_'e of particle dynamics in this region. Howe\_/er, th
images are scaled the same with maximum intensity (white) beirg1e®  fact that independent measurement®gf D, andDy, satisfy
m’fs. Eq. [24] provides a consistency check that gives us confiden

in the present results.

diffusion coefficient image was measured by stepping the
gradients in 5 equal steps and fitting the data voxel-by-voxel t

Egs. [25]-[27]. The five steps provided a check on the linearity~ 4 Do+ 0,2 ]
Tt R C

of In(E) vs g* plot. The range was optimized by doing initial 2
experiments with 16 steps to our maximum gradient strengthe
and selecting a suitable subset of 5 steps for these experimen?é. 2
This gives us 9 apparent diffusion coefficient images from<’

which to calculateD and . by nonlinear least squares fitting. 1 A
s h=0mm
RESULTS 9
/ h=35mm
The nine apparent axial diffusion coefficient images, re- o
. . - B~

ferred to in the prevoius paragraph, are shown in Fig. 7. Th g

. h . . /=70 mm
three columns represent increasing observation tilmé&®m 4
left to right (2.75, 6.31, and 8.06 ms). The rows represent the_ 7=0mm

three different gradient pulse sequences shown in Fig. 1, irk 3
order of greater signal attenuation or apparent diffusiog, (D Né 5t
Dg, and Dy, corresponding to CPG, SPG, and RSPG). In all E,

images, the gradient pulse lengilwas 2.048 ms. In order to 1

make apparent the variation in the data for the different gra- , o
dient sequences we scaled the intensity identically for all 0 20 40 60 80
images so that the contrast is appropriate for the upper left 7 (mm)

image, but in so doing, we have saturated the more IntensglG. 8. Quantitative plots of the spatial dependence of the apparer

images toward the lower right. Nevertheless, the spatial vagittusion coefficients measured by CPG{), SPG D), RSPG Dy), and the
ation of the apparent diffusion coefficient is clearly evident iaverage P, +D¢)/2 as a function of (A) the depth in the flowing layemt
the intermediate images. the center of the flow = 35 mm and (B) the distandealong the flow at a

A consistent feature of all the data is the increase in ax@fpth ofh = 1 mm. The data are from the images of Fig. 7 for- 6.31 ms.

. . . . . . . The variation of diffusion with depth is elucidated by the curves and i
diffusion with distance along the flow direction, from right tc'dif“ferent for the CPG sequence which is almost constant below the fre

left in these images, as has already been repoite8).(The gyrface, than for the RSPG and SPG sequences which have their maxima v
apparent diffusion increases with for all three sequencesnear the free surface.
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FIG. 10. Profiles from the data of Fig. 9 for the axial diffusion coefficient

< : 0 D, the correlation timer,, and longitudinal velocityV as a function of the
Correlation Time depth below the free surfack, at the center of the free surfade= 35 mm.
. 8x10° The axial correlation time is indeterminate in the solid body region due to

the small values of the apparent diffusion coefficient measured.

body region, as expected. It departs from the linear depender
quadratically as the particles start to move relative to eac
other away from the solid body region but the quadratic de
Diffusion Coefficient 0 pendence is reduced as the free surface is approached, app
imating a linear dependenc@)( The diffusion coefficienD,

FIG. 9. _Images pf the in—_pl_ane velocit\(, the axial _corrglation timgc, _negligibly small in the solid body region, increases approxi
and the axial diffusion coefficient. The axial correlation time and diffusion . S .
coefficient images are calculated from the NMR data of Fig. 7. mately quadratically, as well, but seems to malr_]tam this O!‘
pendence all the way to the free surface. The axial correlatic

The resulting axial correlation time image, calculated fror'%me 7. s indeterminate in the solid body region but seems t

the nine images of Fig. 7, is shown in Fig. 9, together with t aﬁssume a nonzero value of appr(_)X|mater 1.8 ms as soon
. A . 2 ere is a measurable flow of particles at arotnd 14 mm.
image of the axial diffusion coefficied® = (u“)7. and the

image of the average velocity component parallel to the frételncreases approximately quadratically from there to the fre

surface, obtained by the phase meth®dd2(1) with the motion surf_af:e where it is ?‘b"“t 3.5 ms, _refle(_:tlng more energet
) . . o . collisions that result in longer free flight times.

sensitizing gradients in the-y plane. The velocity image is

approximately symmetric about the center of the cylinder, i.e.,

particles speed up to the center and slow down past it, at any 10 . ‘ . 10

given depth in the flowing layer. At the same time, the flow
velocity decreases with increasing depth, until it reaches zero 18 =&
at the boundary with the solid body region. The diffusion ‘: o
image, like the apparent diffusion images of Fig. 7, shows that lg 0 X<
D increases monotonically as a function of distance traveled g g
down the flowing layer. The correlation time image does not 14 < :’
scale directly with either th® or the velocity over the entire
fluidized region and further experiments are being done at i)
different rotation rates to asses these differences.

The axial correlation timer, together with the axial diffu 0

sion coefficienD, and the in-plane velocity, along the two 0 20 40 60 380
specific directions described in Fig. 8, are shown in Figs. 10
and 11. Figure 10 shows these functions along the perpendic-
ular bisector of the free surface (at= 35 mm), whereas Fig. FIG.11. Profiles from the data of Fig. 9 for the axial diffusion coefficient
11 shows them along a line parallel to the free surface and)il_the correlation timer, and the longitudinal velocity as a function of the

. . osition along the free surfade at a depth oh = 1 mm. The axial correlation
mm b_elow It_ (at_h =1 m_m)' Correspondlng to the apparenﬁme 7. does not scale with eith&f or D. In fact, it is virtually constant for
diffusion projections of Fig. 8A. most of the flow, after the initial rise from about 1.8 to 3 ms over the first 2(

Figure 10 shows that the velocity profile is linear in the solighm of the flowing layer.

{ (mm)
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Figure 11 shows that the same three parameters are mapplications not only in granular flow but also in turbulence
more diverse along a line 1 mm below the free surface, corfgerous media flow, and various suspension flows. As a bypro
sponding to the apparent diffusion coefficient projections ofct, we have shown that the venerable Stejskal-Tanner ¢
Fig. 8B. The in-plane velocity is a skewed parabola with itsquence can be applied to macroscopic diffusion in granul:
peak shifted to the lower half of the flow while the diffusiorflows, in addition to molecular diffusion as it has been applie
coefficient D increases monotonically from the top to thdor more than three decades.
bottom of the flow. In contrast, the correlation timg starts
from a nonzero value~1.8 ms) at the top of the flowing ACKNOWLEDGMENTS
region, increases approximately linearly for the first 20 mm,
and remains steady at a value about 3 ms for the rest of th&his research was supported by the Engineering Research Program of
way. Thus, neitheD nor 7, scale withV over the length of the Office of Basic Energy Sciences, Department of Energy, under Grant DE
free surface. FG03-98ER14912. We thank Eiichi Fukushima, Steve Altobelli, and Dea

At the top-center of the flowing Iayel‘ F 35 mm anch = ;T;Srtgs for many discussions and Cathy Clewett for assistance in drawing t
1 mm), where the two lines chosen for analysis intersect (Fig.

8), the longitudinal velocityv is 0.29 m/s, the diffusion coef-
ficientD is 5.5X 10°° m?s, and the correlation time is around

3 ms. This results in a velocity fluctuation intensity or granulay ¢ o Stejskal and J. E. Tanner, Spin diffusion measurements: Spin
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