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A parametric method for spatially resolved measurements for
velocity autocorrelation functions, Ru(t) 5 ^u(t)u(t 1 t)&, ex-
pressed as a sum of exponentials, is presented. The method is
applied to a granular flow system of 2-mm oil-filled spheres ro-
tated in a half-filled horizontal cylinder, which is an Ornstein–
Uhlenbeck process with velocity autocorrelation function Ru(t) 5
u2&e2ztz/tc, where tc is the correlation time and D 5 ^u2&tc is the

diffusion coefficient. The pulsed-field-gradient NMR method con-
sists of applying three different gradient pulse sequences of vary-
ing motion sensitivity to distinguish the range of correlation times
present for particle motion. Time-dependent apparent diffusion
coefficients are measured for these three sequences and tc and D
are then calculated from the apparent diffusion coefficient images.
For the cylinder rotation rate of 2.3 rad/s, the axial diffusion
coefficient at the top center of the free surface was 5.5 3 1026 m2/s,
the correlation time was 3 ms, and the velocity fluctuation or
granular temperature ^u2& was 1.8 3 1023 m2/s2. This method is
also applicable to study transport in systems involving turbulence
and porous media flows. © 2000 Academic Press

Key Words: velocity autocorrelation; correlation time; diffusion
coefficient; pulsed-field-gradient; granular flows.

INTRODUCTION

A magnetic resonance imaging (MRI) method has b
developed to spatially measure the parameters of any ve
autocorrelation function that can be expressed as a su
exponentials. The nuclear magnetic resonance (NMR) me
used is a modification of the original pulsed gradient met
by Stejskal and Tanner (1) to probe diffusion processes. The
methods and their applications have been discussed by
laghan (2) and in more recent reviews (3, 4). Ours is a gener
NMR method that can be applied to problems such as tu
lence and porous media flows. In this paper we apply it
granular flow system consisting of 2-mm spherical part
rotated in a half-filled horizontal cylinder. We have previou
made MRI measurements of the velocity field (5), axial seg
regation (6), apparent diffusion coefficient images (7), and
time-dependent diffusion coefficient images (8) in granula
flow systems. In this paper we present a method to calcula
correlation time and the diffusion coefficient correspondin
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the random motion of granular particles from apparent d
sion coefficient images.

Granular flows are of significant technological and scien
interest. This is due to their ubiquitous presence in geophy
systems and major industries, such as foods, pharmaceu
and power, and because of their complex behavior w
encompasses solid-, liquid-, and gas-like states and inc
pattern formation and self-organized criticality (9). A charac
teristic feature of granular flow is the discrete nature of
particles and the presence of dissipative inelastic collis
Continuum mechanics methods modified with concepts
the kinetic theory of gases have been developed (10–12) to
model granular flow. The concept of granular tempera
associated with the variance of the fluctuating compone
the velocity, is introduced to model flow and is incorpora
into the system energy balance equation (12). Savage and D
(13) have used molecular dynamics simulations and shown

article collisions can be modeled by a near exponentia
ocity autocorrelation function in shear flow. In segregat

ixing studies of inhomogeneous particles, either in the r
ng cylinder or in a vibrated layer, an important phenomen
hat of a mixture of particles with different diffusivities caus
article segregation and pattern formation. A diffusion co
ient describing this particle migration has been used to
elop segregation theories (14–16). Thus, a noninvasive n
lear magnetic resonance (NMR) technique to spatially im
he stochastic properties of particle motion will be of g
alue. MRI can make spatially resolved 3D velocity fluctua
easurements deep within the bulk of opaque materials, u
recently proposed technique of diffusing-wave spectros

17), which makes use of multiple scattered light.
We model the particle velocity by a stationary stocha

rocess with mean velocityV and a random fluctuating velo
ty u, such that that the velocity autocorrelation function
Ru(t) 5 ^u(t 1 t)u(t)&. The formal force balance for th
system can also be expressed in terms of a gener
Langevin equation (18),

m
d

dt
u~t! 5 2m E

2`

t

h~t 2 s!u~s!ds1 fr~t!, [1]
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97CORRELATION TIME IMAGING FOR GRANULAR FLOWS
where m is the mass of the particle,h(t) is the memor
function which incorporates friction effects, andf r(t) is the
andom force. The autocorrelation functionRu(t) of u(t) can
e related to the memory functionh(t) and the forcing functio

properties through the fluctuation dissipation theorem18).
he method we discuss in this paper consists of assum
arametric form forRu(t) and estimating its parameters. T

same technique can also be applied to measure the para
of the memory function.

Another important tool for studying dynamics, mixing, a
transport in systems with random or nonlinear advection i
time-dependent diffusion coefficient

D~D! 5
^~ x~D! 2 x~0!! 2&

2D
, [2]

where x(D) is the position of the particle at timeD and
^( x(D)& 2 x(0))2& is the mean squared displacement or p-
tion variance (19). Because the particle displacement can
calculated from the velocity, the time-dependent diffusion
velocity autocorrelation are related for a stochastic proce

D~D! 5 E
0

D S1 2
t

DDRu~t!dt. [3]

The diffusion coefficient is defined to be the long time limi
D(D),

D 5 lim
D3`

D~D! 5 E
0

`

Ru~t!dt. [4]

NMR is a powerful technique for probing particle dynam
because the diffusion coefficient measured by NMR with
row (impulse like) bipolar pulsed gradients (2, 4) and time
separationD is the time-dependent diffusion coefficientD(D).
If the gradients are not impulses, then NMR measure
apparent time-dependent diffusivity whose analytical exp
sion can be calculated provided we know the analytical m
for Ru(t) (20).

The average correlation time for a process with velo
autocorrelation functionRu(t) is defined by (18)

tc 5 E
0

`

Ru~t!dt /Ru~0!, [5]

nd the velocity fluctuation intensity, referred to as the gran
a

ters

e

i
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d
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emperature in granular flow studies, by^u & 5 Ru(0) (13). It
hen follows that

D 5 ^u2&tc. [6]

We develop a method for estimating parameters of
velocity autocorrelation functionRu(t) 5 ^u2&e2utu/tc of the
Ornstein–Uhlenbeck (O–U) process (18), which describes th
elocity of a Brownian particle. Three pulse sequences wi
sed: (a) a standard bipolar pulsed gradient spin-echo seq
PGSE), (b) its repeated version with two cycles, and (c) a
ompensated pulsed gradient spin-echo sequence (21), also
eferred to as double PGSE elsewhere (2, 4). We use th
omenclature of “flow compensated pulse gradient spin-
equence” rather than double PGSE to avoid confusion
he repeated PGSE sequence. The flow compensated
radient sequence has its first moment zero,* tg(t)dt 5 0,
hereg(t) is the effective gradient and is akin to the even

echo. It has the property that the magnetization of a
moving with constant velocity accumulates no net phase d
the sequence, an effect first observed by Carr and Purcel22).
deGennes showed that even for stochastic motion with c
lations, such as turbulent flow, even echoes refocus
partially and reduce signal loss (23). We use this sensitivit
toward correlated motion to improve correlation time meas
ments. The compensated pulse sequence is also the sm
subset of the time-modulated gradient pulse sequences c
ered by Callaghan and Stepisnik (24). They developed the
heory in the frequency domain, while we present a techn
or estimating the parameters ofRu(t) in the time domain i
this paper.

Stepisnik (20) has derived equations for the apparent d
sion coefficient and applied them to experimental data
polymer diffusion. He considered both the O–U process an
exponential memory function. We derive similar express
for the compensated and the repeated pulsed gradie
quence. In turbulence studies Gao and Gore (25) have applie
an exponential velocity auotcorrelation function. Kuethe
Gao (26) considered a parametric formD(D) 5 Dt(1 2
e2D/tc), and compared their model to Gao and Gore’s (25), at
rst and second echoes, for their applicability to measur
ddy diffusivity. In this paper our emphasis is on strategie
easure the velocity autocorrelation function of any gen

orm, using the exponential correlation as a template.
Studies of transport phenomena in heterogeneous m

pply averaged theories of transport phenomena which m
he conveyance of mass, energy, momentum, and elec
ithin the system. Examples of averaged transport mode

ound in the kinetic theory of gases, turbulent flow the
ransport theories for porous media, colloidal systems,
ultiphase (solid–liquid–gas) suspensions. Mixing occu

hese systems because of nonlinear flow effects and cou
etween flow and diffusion. Transport is due to macro s
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98 CAPRIHAN AND SEYMOUR
velocity fluctuations and is often modeled by dispersion (27) or
an effective diffusion coefficient (19). The dispersion theory
imilar to those for diffusion and the same MRI techniq
sed for measuring the microscopic molecular diffusion c
cient can also be employed for measuring macroscopic
ersion (28). The dispersion coefficient has been measure
orous media flows (29–32) and Taylor dispersion (33). A
oncept of nonlocal dispersion coefficient has been deve
o model transport processes where velocity has fluctua
ver a continuum of scales, as in turbulence and fractal po
edia (27), and NMR methods for its measurement have
een developed (34).

THEORY

The principle of this method will be illustrated in terms
the effective gradientsg(t) of duration T and zero are
* g(t) 5 0). This condition is necessary for the phase of

stationary spins to be refocussed. The phase of the NMR
is given by

f~T! 5 g E
0

T

g~s! x~s!ds5 2g E
0

T

u ~s!u~s!ds, [7]

hereu (t) 5 * 0
t g(s)ds andu (T) 5 0 because* 0

Tg(t)dt 5 0.
Following Mitra and Halperin (35) we can expressf(T) in
terms of q 5 (ggd)/(2p) and the mean position of t

articles

xd,tk
5

1

d E
tk

tk1d

x~s!ds

uring each gradient pulse of durationd. For the bipola
gradient pulse pair sequence of Fig. 1A, we have

f~T! 5 2pq~ xd,0 2 xd,t1 2 xd,t2 1 xd,t3 1 xd,t4 2 xd,t5!

5 2pqX, [8]

hereX 5 xd,0 2 xd,t1 2 xd,t2 1 xd,t3 1 xd,t4 2 xd,t5. xd,tk 5
x(t k) is the position of the particle at timet k for a shortd. X

easures the particle displacement in the timeD between th
ipolar gradients for one bipolar pulse. For multiple bip
ulses of arbitrary polarity,X is a combined measure of p

icle displacement during each bipolar gradient pulse. Its
nce depends on correlations among successive displace
4). In this analysis we repeat bipolar gradient pulses of
rea with arbitrary polarity. A different probing seque
here one gradient pulse is followed byn refocussing gradie
ulses has been considered in (36) to measure position corr

ations. Another variation is the 2D velocity exchange ex
s
f-
is-
or

ed
ns
us
o

e
in

r

ri-
ents
ro

r-

iment (VEXSY), where the amplitude of two pairs of bipo
gradients is stepped independently (37).

The NMR signal is proportional to ^eif(T)& 5
ei ^f&^ei (f(T)2^f&)&, with its magnitude being given by

E 5u^ei ~f~T!2^f&!&u . [9]

Equation [9] can be expanded by cumulant expansion to

E 5 e2^@f~T!2^f&# 2&c/ 2!1^@f~T!2^f&# 4&c/4!2· · ·, [10]

where^x& c stands for the cumulant ofx. Expanding cumulant
we get (18)

E 5 e2^@f~T!2^f&# 2&/ 2!1$^@f~T!2^f&# 4&23^@f~T!2^f&# 2& 2%/4!2· · ·. [11]

Equation [11] can also be expressed in terms ofq andX as

FIG. 1. Effective pulsed magnetic field gradient sequences. (A) A ge
sequence withn bipolar gradient pulses of arbitrary order. Gradient p
sequences with different motion probing properties can be designed b
trolling the polarity of the bipolar pulses and the mixing timestmk. (B) The
effective gradient for the single pulsed gradient (SPG) experiment. (C
repeated pulsed gradient (RSPG) sequence. (D) The compensated
gradient (CPG) sequence. Each of the gradient sequences has a d
sensitivity to motion dependent on the time scales of the motion an
gradient sequence polarity.
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99CORRELATION TIME IMAGING FOR GRANULAR FLOWS
E 5 e22p 2q 2s x
21~2p 4q 4~~X2^X&! 423~s X

2! 2!!/32· · ·. [12]

If f(T) has Gaussian distribution, terms higher than se
rder are zero and we get

E 5 e2s f
2 / 2, [13]

wheres f
2 5 ^(f(T) 2 ^f&) 2& is the variance of the phase.

xperimental data indicate that ln(E) vs q2 is a straight line
which will generally be true for small values ofq, then we
know that theq2 term is dominant in this region and we c
calculate the variances x

2 5 ^(X 2 ^X&) 2& from the slope of th
traight line (4). In this linear region, we can write

E 5 e22p 2q 2s X
2

[14]

which is identical to Eq. [13]. Thus, we can calculatesX
2 from

q. [14] either for Guassian phase distribution or for sm
alues ofq, where ln(E) vs q2 is a straight line.
The phase variance in Eq. [13] depends on the vel

autocorrelation functionRu(t) and the shape of the probi
gradient waveform. This relationship can be explicitly writ
as

s f
2 5 g 2 E

0

`

u ~t! E
0

`

Ru~t 2 s!u ~s!dsdt [15]

5 2g 2 E
0

T

u ~t! E
0

t

Ru~t 2 s!u ~s!dsdt, [16]

here we have definedu (t) 5 * 0
t g(s) 5 0, for t $ T. Thus

if the velocity autocorrelation function is known we can c
culatesf

2 and hence the signal attenuation. Equation [15]
a convenient form to take the Fourier transform and hav
expression for signal attenuation in terms of the velocity
tocorrelation spectrum and the gradient waveform spec
(2). If Ru(t) can be written in terms of separable functio
hen Eq. [16] can be further simplified. For example

u(t 2 s) 5 ¥ k Ak(t) Ak(s), then

s f
2 5 2g 2 O

k
E

0

T

u ~t! Ak~t! E
0

t

u ~s! Ak~s!dsdt. [17]

Mathematica program was used for such calculations.
u(t) that is a sum of functions of the form̂u2&e2utu/ta cos(vt)

satisfies the separable requirement.
We consider a train of bipolar gradient pulse pairs wh

polarity is chosen to probe spin dynamics. We haven such
pairs in Fig. 1A. For such a pulse train, the apparent diffu
coefficientDa(D) measured by NMR is defined by
d

ll

ty

-
n
n
-
m
,
f

y

e

n

E~q, D, d! 5 e24np 2q 2~D2~d/3!!Da~D!. [18]

Da(D) can be calculated from Eq. [18] without any knowle
of Ru(t). For any specific model ofRu(t), we can theoreticall
relateDa(D) to the parameters ofRu(t). The factorn in the

xponent (Eq. [18]) ensures that we haveDa 5 D for any
number n of bipolar pulses (2) for uncorrelated Brownia
motion (Ru(t) 5 2Dd(t)).

The MRI experiment to measure diffusion consists of s
selection, followed by sensitizing the magnetization phas
motion, and imaging the slice. Magnetic field gradients
motion sensitivity should have zero total area and other
can have different patterns to probe motion properties (2). The
common bipolar gradient (Fig. 1B), also known as a pul
field-gradient method, will be called a single-pulsed-grad
sequence (SPG). In Fig. 1C we have a SPG sequence re
once, which we call a repeated single pulsed gradient seq
(RSPG). In Fig. 1D we have a flow compensated sequen
sequence with its first moment zero (* tg(t)dt 5 0), which we
call a compensated pulsed gradient sequence (CPG). If n
sary, these sequences can be extended ton pulses to prob
more complex velocity autocorrelation functions.

For the SPG sequence the intensity of any voxel is give

E~q, D, d! 5 Ke24p 2q 2~D2d/3! DS~D!, [19]

where d is the gradient pulse width,D the gradient puls
separation, andK a proportionality constant.DS(D) is the
apparent time-dependent diffusion coefficient. Its spatial
tribution can be calculated by repeated imaging for diffe
values ofq, at fixed values ofD andd, followed by a voxel
by-voxel least-squares fit to Eq. [19].

For the RSPG sequence the apparent time-dependent
sion coefficientDR(D) is defined by

E~q, D, d! 5 Ke28p 2q 2~D2d/3! DR~D!. [20]

Similarly for the CPG sequence we defineDC(D) by

E~q, D, d! 5 Ke28p 2q 2~D2d/3! DC~D!. [21]

It follows from Eqs. [2], [14], and [17] that for the SP
sequenceD(D) 5 (1 2 (d/(3D)) DS(D). Thus by measurin
DS(D) by NMR we can calculateD(D). This relationship ha
made the PGSE technique very popular for probing diffu
motion.

Let us defineu 1(t) 5 * 0
t g(s)ds, for 0 # t # D 1 d, and

zero otherwise. Then for the RSPG sequenceu (t) 5 u 1(t) 1
u 1(t 2 D 2 d 2 tm) and for the CPG sequenceu (t) 5
u 1(t) 2 u 1(t 2 D 2 d 2 tm) which, when substituted in E
[15], imply that
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100 CAPRIHAN AND SEYMOUR
s f
2~RSPG! 5 2@s f

2~SPG! 1 g 2 E
0

`

u1~t 2 D 2 d 2 tm!

3 E
0

`

Ru~t 2 s!u1~s!dsdt# [22]

nd

s f
2~CPG! 5 2@s f

2~SPG! 2 g 2 E
0

`

u1~t 2 D 2 d 2 tm!

3 E
0

`

Ru~t 2 s!u1~s!dsdt#. [23]

t follows from Eq. [13], the definition of the apparent diffus
oefficients (Eq. [18]), and Eqs. [22] and [23] that

DS~D! 5
DR~D! 1 DC~D!

2
[24]

for any velocity autocorrelation function. Another property
these apparent diffusion coefficients is that the two ce
gradient pulses overlap and cancel each other for the R
sequence (Fig. 1C) with infinitesimally smalld andtm, reduc-
ing the RSPG sequence to a SPG sequence. Thus for infi
imally small d andtm, DS(2D) 5 DR(D).

The functional form of the three apparent diffusion coe
ients can be calculated in terms of velocity autocorrela
arameters from Eqs. [13] and [15] and Eqs. [19]–[21
u(t) 5 ^u2&e2utu/tc , then

DS~D! 5 DS1 1
a

d 2~D 2 d/3!D , [25]

DR~D! 5 DS1 1
a 1 e2~tm/tc!b/ 2

d 2~D 2 d/3! D , [26]

DC~D! 5 DS1 1
a 2 e2~tm/tc!b/ 2

d 2~D 2 d/3! D , [27]

where

a 5 22t c
2d 1 t c

3~1 2 e2~d/tc!!

3 ~2 2 e2~D/tc! 1 e2~D2d!/~tc!!, [28]

b 5 t c
3~1 2 e2~d/tc!! 2~1 2 e2~D/tc!! 2, [29]

and D 5 ^u2&t c.
In Fig. 2 we compare the three apparent diffusion co

cients for a smalld andtm 5 0. All three apparent diffusio
f
al
G

es-

-
n
f

-

oefficients tend to the asymptotic diffusion coefficientD for
t c ! D. In other words, if the spin motion is uncorrelated
the time scale of our pulsed gradient sequence, then all
apparent diffusion coefficients measure the same quantiD.

or highly correlated motion within the timeD (t c @ D) Eq.
[27] implies thatDC(D) approaches zero for anyD ast c tends
o infinity. In other words, there is no attenuation in im
ntensity because of motion. This is the distinguishing fea
f the compensated CPG sequence. It compensates for

ations in motion and increases sensitivity for correlation
easurements. In addition, fort c @ D, we haveDS(D) 5

DR(D)/ 2 5 ^u2&D/ 2, the ballistic (s x
2 } D 2) short time

motion of the O–U process.
We have also plotted the normalized difference (DR(D) 2

DC(D))/D of the apparent diffusion coefficients for the-
peated and the compensated pulse sequences ford 5 tm 5 0
in Fig. 2. It is a measure of the spin phase refocusing by
CPG sequence and depends on the relative values ofD andt c.
The difference is a linear function ofD for t c @ D, becaus

C(D)3 0 andDR(D) is linear. It has the interesting prope
of having a maximum at (D/t c) 5 1.24. Itapproaches zero f
t c ! D because the particle motion appears random. Thu
mmediately know the range oft c in our experiment from th
difference ofDR(D) andDC(D) as a function ofD.

FIG. 2. Dependence on the ratioD/t c of the apparent time-depend
iffusion coefficient for the gradient sequences of Figs. 1B–1D for
radients,d 5 0, and the exponential velocity correlation functionRu(t) 5

^u2&e2(utu/tc ). For D ! t c, the single (DS) and repeated (DR) pulsed gradien
exhibit short time diffusive behavior which is linear, while the compens
sequence (DC ' 0) refocuses the magnetization for motions which ap
deterministic over timeD. This is evidenced by the difference (DR 2 DC),
which collapses toDR at short observation times. All three gradient seque
measure the same asymptotic diffusionD 5 ^u2&t c in the limit D @ t c.
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101CORRELATION TIME IMAGING FOR GRANULAR FLOWS
Even though all curves were plotted for infinitesimally sm
d in Fig. 2, the effect of finited can be considered by looki
at the exact expression for the difference betweenDR(D) and
DC(D),

A~D, tm! 5 DR~D! 2 DC~D! 5
De2~tm/tc!b

d 2~D 2 d/3!
. [30]

In Fig. 3 we plotA(D, tm)/D for tm 5 0 with the experimenta
restriction of D $ d. The difference is a monotonically d
creasing function ofD for (d/t c) $ 0.58. Thus, if the exper-
mental data show that (DR(D) 2DC(D)) is decreasing ever-
where withD for D $ d, then we know that (d/t c) $ 0.58.

he sensitivity for measuringt c decreases with increasi
d/t c. It is best to be able to choosed as small as possible a
work near the maximum of (DR(D) 2 DC(D)). The available
gradient strength limits the smallest that can be used be
signal attenuation depends onq 5 (ggd)/(2p).

There is considerable flexibility in how to calculateD andt c

from Eqs. [25]–[27] and the difference Eq. [30]. Here
discuss some of the possibilities and the analysis used i
work. Even if we had carried out only the SPG experiment
[25]) for a number ofD values, we would in principle hav
ufficient data for calculatingD andt c. In some experiment

such as our rotating cylinder experiment,D andt c are spatially
varying. If the timeD over which the motion is probed is larg
then in this time the particles can move over regions of wi

FIG. 3. Effect of the gradient pulse durationd on the differenceDR 2 DC

of the apparent diffusion coefficients measured for the repeated sing
compensated pulsed gradient sequences as a function of the ratioD/t c. For
d/t c $ 0.58 thedifference is everywhere decreasing as a function ofD/t c,
providing an alternative means to determine the range of the correlation
l

se

his
.

ly

different D andt c, making it impossible to assume that th
stochastic properties are stationary. At the top center o
flowing layer in our experiments the velocity was about
cm/s, so a particle moves 7.2 mm during the motion pro
time of 24 ms (2D 1 4d), which is about 7 pixels at 1 m
spatial resolution. Therefore, we are measuring average
cle dynamics over the region the particle moves in 2D 1 4d.
Smooth spatial variation ofD andt c over these 7 pixels give
us added physical basis to trust the stationarity assumpt

We have seen from Eq. [24] that only two of these exp
ments are independent. We can extract the information o
third experiment from any two experiments. However, if
process is stationary over the total motion probing time,
[24] is true. We note that with SPG the motion is probed f
time intervalD 1 2d (Fig. 1B), while for RSPG and CPG it
probed for time interval 2D 1 4d. If all three experiments a
done and Eq. [24] does not hold, then we know that par
motion statistics present overD 1 2d are not the same over t
2D 1 4d interval, and we conclude that particle motion is
stationary during the experiment. Thus doing all three ex
ments and testing the validity of Eq. [24] gives us a chec
the stationarity of the spin motion. Finally, the use of all th
sequences increases the number of measurements for th
D from which to calculateD andt c and provide separation
the stochastic and deterministic motions relative to time s
D (4, 33).

If tm is varied for fixed values ofd andD then Eq. [30] give
a simple method for calculatingD andt c. However, if we do
not varyD we forego the advantage of finding out whether
experiment was done near the sensitive part of Eq. [30]
near the maximum inA(D, tm). In this paper we have ke
tm 5 0, d constant, and variedD, starting from a minimum
value ofD which we callDmin ($d). As mentioned earlier, th
was done to probe whether we were at the sensitive regi
Eq. [30]. We calculatedt c from

A~D!

A~Dmin!
5

~Dmin 2 d/3!

~D 2 d/3!

~1 2 e2~D/tc!! 2

~1 2 e2~Dmin/tc!! 2 [31]

y nonlinear least squares fit. This ratio is independent oD.
ncet c is known,D can be calculated from Eqs. [25]–[27]

a linear fit.
So far, we have discussed the method for calculatingD and

t c in detail forRu(t) 5 ^u2&e2utu/tc . To demonstrate the abili
of our method to handle more complex velocity autocorrela
functions we present the example of a velocity autocorrel
modeled as a sum of exponentials. Such a velocity autoc
lation function is relevant to a particle in a high density fl
undergoing “caged diffusion” and particles diffusing in a b
Ru(t) can become negative because the particle suffers r-
tion on collision with the walls (38). Different analytical mod
els for these types of velocity autocorrelation functions h
been discussed in the context of molecular dynamics by

nd

e.



ve

ga
po

n

e

ll
e

e

om
lex

f
te

ed
ffi
nd
n
t t
le

ls.

z ed by
w

.

cused
ause
PG

at at
ients
rates

and
e
le
d the
se of

sion

-mm
r-
bient
e in
er/
and
by

nly
ion.
be-

axial
ents
ns.
wn in
tion
even
the
spins

radi-
nts
tio for
ome
ence
ping
for

the
d by

102 CAPRIHAN AND SEYMOUR
and Yip (38). Negative velocity autocorrelation functions ha
also been seen in porous media flow studies (39) and in
computer simulations of granular fluids in the rapid flow,
regime (40). One simple model is that of a sum of two ex

entials with one of the coefficients being negative (41). Again
the apparent diffusion coefficientsDS, DR, and DC can be

asily calculated in terms of the parameters describingRu(t).
Thus if

Ru~t! 5 O
k

cke
2~utu/tk!, [32]

then

^u2& 5 O
k

ck, tc 5

O
k

cktk

O
k

ck

,

and D 5 ¥ kckt k. The coefficientsck do not have to be a
positive, although their sum̂u2& must be. In this case th

quations corresponding to Eqs. [25]–[27] are

DS 5 D 1
¥kcktkak

d 2~D 2 d/3!
, [33]

DR 5 D 1
¥kcktk~ak 1 e2~tm/tk!bk/ 2!

d 2~D 2 d/3!
, [34]

and

DC 5 D 1
¥kcktk~ak 2 e2~tm/tk!bk/ 2!

d 2~D 2 d/3!
. [35]

ak andbk in Eqs. [33]–[35] can be appropriately obtained fr
the definitions in Eqs. [28] and [29]. For this more comp
Ru(t), we must estimate 2n parameters for a sum ofn expo-
nentials from NMR data, a much harder problem.

Let us consider a simple model forRu(t) in the case o
particles diffusing with an O–U process within parallel pla
of separationd (41),

Ru~t! 5 DuS 1

tu
e2~utu/tu! 2

1

tw
e2~utu/tw!D . [36]

In this equationt u is the correlation time for the unrestrict
process andDu the unrestricted asymptotic diffusion coe-
cient. Qualitativelyt u is a measure of particle dynamics a
the collision with the walls is modeled bytw. The negative sig
before the second exponential models the reflection a
walls. tw is of the order ofd2/Du, the average time a partic
needs to diffuse across the separation between the wal
s
-

s

he

An

interesting property of Eq. [36] is that the asymptoticD as
defined by Eq. [4] and the average correlation timet c are both
ero. This is because the particle movements are bound
all restrictions, which makeŝ ( x(D) 2 x(0))2& also

bounded, and as the timeD goes to infinityD tends to zero (Eq
[2]). In Fig. 4 we plot the apparent diffusion coefficientsDS,
DR, andDC as a function ofD/t u for tw/t u 5 16. In a system
described by Eq. [36] there is always a crossover point atD 5
D c as shown in Fig. 4A, such that forD $ D c, DC $ DR. This
occurs because the spin magnetization phase gets refo
due to reflections at the wall or particle cage and not bec
of the bipolar gradient polarity being reversed as in the C
sequence. In Fig. 4B we show the expected behavior th
long observation times the three apparent diffusion coeffic
go to zero asymptotically. This example again demonst
the advantage of carrying out experiments with the RSPG
the CPG sequences. If we were to see thatDR(D) has becom
smaller thanDC(D) for someD, then we know that the partic
velocities have reversed in the time between the first an
second bipolar gradient pulses. This could happen becau
wall reflections, as in the above example of restricted diffu
in a box or particle cage, or due to vortices in a flow.

EXPERIMENT

The experimental system consisted of a horizontal 70
i.d. cylinder half-filled with 2-mm oil-filled, hard plastic sphe
ical beads and rotated at 2.3 rad/s (22 rpm) at an am
temperature of 25°C (Fig. 5). The MRI experiment was don
a 31-cm, 1.9 T Oxford magnet with a TECMAG imag
spectrometer. We took a 20-mm thick transverse slice
made an image of the cylinder cross-section with 1-mm
1-mm in-plane resolution. In this paper we will discuss o
the axial component of the velocity autocorrelation funct
This is the most straightforward component to consider
cause of the absence of any average velocity in the
direction. Clearly, this method will also apply to measurem
of correlation times of velocity components in other directio

The pulse sequence used in these experiments is sho
Fig. 6. Sixp pulses were used to refocus the effect of mo
in the presence of magnetic field inhomogeneities. The
number of p pulses ensures that the first moment of
background gradient is zero and the phase acquired by
moving with constant velocity in the presence of these g
ents is also zero (21). This refocussing of background gradie
minimizes signal loss and enhances the signal-to-noise ra
calculating the apparent diffusion coefficients. There is s
unavoidable signal loss from spins in voxels that experi
acceleration, on average. This loss was minimized by kee
the time between thep pulses short, and increasing the time
the gradient pulse separation by going from an initial 2p pulse
sequence to the 6p pulse sequence used.

The diffusion coefficient and the correlation time for
axial (Z) component of velocity fluctuations were measure
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103CORRELATION TIME IMAGING FOR GRANULAR FLOWS
choosing the motion sensitizing gradients in Fig. 6 to be in
axial direction. The diffusion coefficient and correlation ti
in the transverse plane can be measured by choosing diff
sensitizing gradients in the (X, Y) directions and the fu

FIG. 4. Dependence on the ratioD/t u of the apparent time-depend
diffusion coefficient for the gradient sequences of Figs. 1B–1D for
gradients,d 5 0, and the velocity correlation functionRu(t) 5 Du[(1/(tu)e

2utu/tu

2 (1/tw)e2utu/tw] with tw/t u 5 16. Ru(t) exhibits negative correlation f
D/t u . 3 because particle velocity is reversed on collision with the wall
A), at larger values ofD/t u, DC becomes larger thanDR because of wa
eflections; (B) shows the behavior of the apparent diffusion coefficien
onger times. All three apparent diffusion coefficients approach zero asD3 `
because the position variance is bounded.
e

ion

diffusion tensor by suitable combinations of the gradients.
in-plane particle velocity images in the horizontal and
vertical direction and the axial velocity were also measure
the phase method (21) with three velocity encoding steps. T
velocity sensitivity was 0.24 m/s perp radians of phase shi
The mean velocity in the axial direction was found to be z
The spatial dependence of the three apparent diffusion c
cientsDS(D), DR(D), DC(D) were measured for a fixedd 5

.048 ms andD of 2.75, 6.31, and 8.06 ms. Each appa

l

n

at

FIG. 5. Schematic of the granular flow experimental geometry. In
experiment we present data for the diffusive motion in the axial direction
half-filled rotating cylinder as a function of the lengthl parallel to the fre
surface and depthh perpendicular to the free surface. The particles und
shear flow in a lens shaped layer near the free surface and are returne
top of the flow by solid body rotation, as depicted by the arrows for vel
in the left end of the cylinder.

FIG. 6. The imaging pulse sequence used to measure the axial diffus
the rotating cylinder. Sixp pulses minimize the echo time and provide e
echo refocusing of magnetization phase due to particle motion in backg
gradients. Motion sensitizing gradient pulse trains are presented for (A
repeated single pulsed gradient (RSPG) and (B) the compensated
gradient (CPG) experiments.
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104 CAPRIHAN AND SEYMOUR
diffusion coefficient image was measured by stepping
gradients in 5 equal steps and fitting the data voxel-by-vox
Eqs. [25]–[27]. The five steps provided a check on the line
of ln(E) vs q2 plot. The range was optimized by doing init
experiments with 16 steps to our maximum gradient stre
and selecting a suitable subset of 5 steps for these experim
This gives us 9 apparent diffusion coefficient images f
which to calculateD andt c by nonlinear least squares fittin

RESULTS

The nine apparent axial diffusion coefficient images,
ferred to in the prevoius paragraph, are shown in Fig. 7.
three columns represent increasing observation timesD from
left to right (2.75, 6.31, and 8.06 ms). The rows represen
three different gradient pulse sequences shown in Fig.
order of greater signal attenuation or apparent diffusionC,
DS, and DR, corresponding to CPG, SPG, and RSPG). In
mages, the gradient pulse lengthd was 2.048 ms. In order
make apparent the variation in the data for the different
dient sequences we scaled the intensity identically fo
images so that the contrast is appropriate for the uppe
image, but in so doing, we have saturated the more in
images toward the lower right. Nevertheless, the spatial
ation of the apparent diffusion coefficient is clearly eviden
the intermediate images.

A consistent feature of all the data is the increase in
diffusion with distance along the flow direction, from right
left in these images, as has already been reported (7, 8). The

pparent diffusion increases withD for all three sequenc

FIG. 7. Grayscale NMR images of the apparent diffusion coeffic
measured in the granular flow for the CPG (DC), SPG (DS), and RSPG (DR)
sequences for displacement observation timesD 5 2.75, 6.31, and 8.06 ms a
a fixed pulsed gradient durationd 5 2.048 ms. The image intensity
proportional to the amplitude of the apparent diffusion coefficient an
images are scaled the same with maximum intensity (white) being 43 1026

m2/s.
e
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hile it increases for eachD in going from CPG to SPG
RSPG, indicating thatt c is of the same order asD. As a result
we are able to calculatet c from Eqs. [25]–[29].

Figure 8 shows quantitative plots of the apparent a
diffusion coefficients along two selected lines from the ce
column (D 5 6.31 ms) of Fig. 7. The two selected lines are

erpendicular bisector of the free surface and a line paral
he free surface but 1 mm below it, as shown in a schem
iagram to the right. We also plot the average ofDR andDC as

a dotted line and it is identical, within experimental errors
DS. This agreement confirms that particle dynamics have
violated the stationary assumption during the motion-pro
time (2D 1 4d).

There are minor differences in the relative amplitudes oDC

andDR between Fig. 4 of Ref. (8) and our Fig. 8A in deepe
regions of the flowing layer. The rotation rates were the s
in the two experiments but the profiles for the two figures
at slightly different places in the flow. These differences
not significant and further experiments will be done to cla
the nature of particle dynamics in this region. However,
fact that independent measurements ofDC, DS, andDR satisfy

q. [24] provides a consistency check that gives us confid
n the present results.

FIG. 8. Quantitative plots of the spatial dependence of the app
diffusion coefficients measured by CPG (DC), SPG (DS), RSPG (DR), and the

verage (DR 1DC)/ 2 as a function of (A) the depth in the flowing layerh at
the center of the flowl 5 35 mm and (B) the distancel along the flow at

epth ofh 5 1 mm. The data are from the images of Fig. 7 forD 5 6.31 ms
he variation of diffusion with depth is elucidated by the curves an
ifferent for the CPG sequence which is almost constant below the
urface, than for the RSPG and SPG sequences which have their maxim
ear the free surface.
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105CORRELATION TIME IMAGING FOR GRANULAR FLOWS
The resulting axial correlation time image, calculated f
the nine images of Fig. 7, is shown in Fig. 9, together with
image of the axial diffusion coefficientD 5 ^u2&t c and the
image of the average velocity component parallel to the
surface, obtained by the phase method (2, 21) with the motion
sensitizing gradients in thex–y plane. The velocity image
approximately symmetric about the center of the cylinder,
particles speed up to the center and slow down past it, a
given depth in the flowing layer. At the same time, the fl
velocity decreases with increasing depth, until it reaches
at the boundary with the solid body region. The diffus
image, like the apparent diffusion images of Fig. 7, shows
D increases monotonically as a function of distance trav
down the flowing layer. The correlation time image does
scale directly with either theD or the velocity over the enti
fluidized region and further experiments are being don
different rotation rates to asses these differences.

The axial correlation timet c, together with the axial diffu-
sion coefficientD, and the in-plane velocityV, along the two
specific directions described in Fig. 8, are shown in Figs
and 11. Figure 10 shows these functions along the perpe
ular bisector of the free surface (atl 5 35 mm), whereas Fi
11 shows them along a line parallel to the free surface a
mm below it (ath 5 1 mm), corresponding to the appar
diffusion projections of Fig. 8A.

Figure 10 shows that the velocity profile is linear in the s

FIG. 9. Images of the in-plane velocityV, the axial correlation timet c,
and the axial diffusion coefficient. The axial correlation time and diffu
coefficient images are calculated from the NMR data of Fig. 7.
e
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body region, as expected. It departs from the linear depen
quadratically as the particles start to move relative to
other away from the solid body region but the quadratic
pendence is reduced as the free surface is approached, a
imating a linear dependence (7). The diffusion coefficientD,
negligibly small in the solid body region, increases appr
mately quadratically, as well, but seems to maintain this
pendence all the way to the free surface. The axial correl
time t c is indeterminate in the solid body region but seem
assume a nonzero value of approximately 1.8 ms as so
there is a measurable flow of particles at aroundh 5 14 mm.
t increases approximately quadratically from there to the
urface where it is about 3.5 ms, reflecting more ener
ollisions that result in longer free flight times.

FIG. 10. Profiles from the data of Fig. 9 for the axial diffusion coeffici
D, the correlation timet c, and longitudinal velocityV as a function of th
depth below the free surface,h, at the center of the free surface,l 5 35 mm.
The axial correlation timet c is indeterminate in the solid body region due
the small values of the apparent diffusion coefficient measured.

FIG. 11. Profiles from the data of Fig. 9 for the axial diffusion coeffici
D, the correlation timet c, and the longitudinal velocityV as a function of th
position along the free surface,l , at a depth ofh 5 1 mm. The axial correlatio
time t c does not scale with eitherV or D. In fact, it is virtually constant fo

ost of the flow, after the initial rise from about 1.8 to 3 ms over the firs
m of the flowing layer.



mu
orr
s o
its

p ion
c the
b

g
m

f t
e

(Fi
f-
nd
ula

eve
Th

e
lied
tero
cyl

ata
ch
od
ion

b b
t ho
a me
s

th
wit
ane
sio
tha

t ela
t ted
i ula
t

ime

tud
ha

ce,
prod-
r se-
ular
lied

of the
t DE-

ean
ng the

1

1

1

1

1

1

106 CAPRIHAN AND SEYMOUR
Figure 11 shows that the same three parameters are
more diverse along a line 1 mm below the free surface, c
sponding to the apparent diffusion coefficient projection
Fig. 8B. The in-plane velocityV is a skewed parabola with

eak shifted to the lower half of the flow while the diffus
oefficient D increases monotonically from the top to
ottom of the flow. In contrast, the correlation timet c starts

from a nonzero value (;1.8 ms) at the top of the flowin
region, increases approximately linearly for the first 20 m
and remains steady at a value about 3 ms for the rest o
way. Thus, neitherD nor t c scale withV over the length of th
free surface.

At the top-center of the flowing layer (l 5 35 mm andh 5
1 mm), where the two lines chosen for analysis intersect
8), the longitudinal velocityV is 0.29 m/s, the diffusion coe
ficient D is 5.53 1026 m2/s, and the correlation time is arou
3 ms. This results in a velocity fluctuation intensity or gran
temperaturêu2& of 1.8 3 1023 m2/s2.

CONCLUSIONS

A general parametric method, using NMR, has been d
oped for measuring velocity autocorrelation functions.
method can be applied to such functions which can be
pressed as a sum of exponentials. The method was app
the problem of characterizing the correlation time in a he
geneous granular flow in a half-filled horizontal rotating
inder, an Ornstein–Uehlenbeck process with

Ru~t! 5 ^u2&e2~utu/tc!.

Heretofore, no experimental technique had yielded such d
bulk granular flows; the closest anyone having come to su
measurement was the diffusing wave spectroscopy meth
Durian’s group (17), which has excellent temporal resolut

ut poor spatial resolution and depth of field that is limited
he number of light reflections by the particles. Their met
lso does not select a velocity component to study but
ures the average of fluctuations in all directions.
We have shown that the correlation timet c of the velocity in

the axial direction, perpendicular to the plane containing
flow, is in the range of milliseconds and does not scale
either the particulate diffusion coefficient nor the in-pl
average velocity over the entire fluidized region. The diffu
coefficientD is some three orders of magnitude greater
he molecular diffusion coefficient for water, due to the r
ively long free-flight times of the particles which is reflec
n the longt c values. We can get a spatial map of gran
emperature from the spatial distribution oft c and D; its
typical range for this particular system goes up to a few t
1023 m2/s2.

Thus, we have presented a new NMR method to s
correlations of random processes. This approach should
ch
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applications not only in granular flow but also in turbulen
porous media flow, and various suspension flows. As a by
uct, we have shown that the venerable Stejskal–Tanne
quence can be applied to macroscopic diffusion in gran
flows, in addition to molecular diffusion as it has been app
for more than three decades.
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